

78

La esta signare ufficie de parte de ministra de administra de la finitación de la finitación de parte entre entre la finitación de parte entre entre entre de la finitación de

Hengan, Henderstein Lit, Samto, Faisman a. Forstal, Hilbarden eta Usano Elanzia enclanza Itagoren eta Usano Elanzia Hitaliaren 12, interesemplere eta pintono segi esaguen. Pinton di barty engerettaria en eligipare eta Usato ante a charer. Dista ana serta Elandi esaren este eta Usato ante eli esaren elitaria en Elanden, vedit resultaria Elabara Engela eta Hitalia. Italiaren engettariaren eservateta Hostanda, Johan Jonoli, eta deste engettariaren eservateta Hostanda, Johan Jonoli, eta deste eservateta esarenda Elabarata. Bola porto eta deste este elitariaren eservateta Hostanda, Johan Jonoli, eta deste este elitariaren eservateta Hostanda, Johan Jonoli, eta deste este elitariaren eservateta Hostanda, Johan Jonoli, eta deste este elitariaren esaren eservateta Hostanda, Johan Jonoli, eta deste este elitariaren esarenda Hostanda Johan Jonoli, eta esaren esaren esarenda Hostanda Johan Jonoli Hostanda Johan Jonoli esaren esarenda Hostanda Johan Jonoli esaren esarenda Hostanda Johan Joh

58 401 801401401411423 addred repair, and visity

How can we identify and eliminate cognitive biases in medical decision making?

Key concept Insight: Decision-making equates to resource allocation minus noise.(Jack Welch) Trade off in Decision-making: **Resource Productivity: Maximizing value from** available resources **Capacity Utilization: Minimizing unused** resources

What measurements to perform based on information from Symptoms Space and Disease Space?

Data Set-Physcian Notes

Train NLP

VectorStock*

aforn

Train Neural Network For Bayesian update **Probability Map** Generation

identification and

Rac

suggestive action

Literature Review Errors: 1.7-6.5% of hospital admissions result in errors, leading to significant mortality and financial costs.

Cost: In 2008, medical errors cost \$19.5 billion in the USA. Incremental cost per error = \$4685.

Statistical significant Correlation exists between cognitive biases and occurrence of medical errors

Research Paper	Cognit
1 Saposnik et al. BMC Medical Informatics and Decision Making (2016) 16:138 DOI 10.1186/s12911-016-0377-1	Risk a
2 Pape, Tom and Kavadias, Stylianos and Sommer, Svenja C., Decision Bias in Project Selection: Experimental Evidence from the Knapsac	k Problem Small-
3 Schmidgall, S., Harris, C., Essien, I., Olshvang, D., Rahman, T., Kim, J. W., & Chellappa, R. (2024). Addressing cognitive bias in medical language models	confirm
Kostick-Quenet, K.M., Gerke, S. AI in the hands of imperfect users. npj Digit. Med. 5, 197 (2022). https://doi.org/10.1038/s41746-022-004)737-z
5 G. Harris, C. (2020, April). Mitigating cognitive biases in machine learning algorithms for decision making. In Companion Proceedings o	f the Web Conference 2020 (pp. 775-781).

tive biases identified

version, overconfidence, confirmation bias, anchoring bias -Project Bias, Premature Search Termination

mation, frequeny, cultural, status quo, false-consensus, recer

Identified Targeted Biases

- Measurement Bias: biasing judgement based on one experimental measurement like single blood test \bullet etc or inappropriate mapping with proxy variable
- Confirmation bias is the tendency to search for, interpret, favor, and recall information in a way that ulletconfirms one's preexisting beliefs or hypotheses. In clinical settings, this might manifest as a doctor giving more weight to evidence that supports their initial diagnosis.
- Automation Bias: Trusting the machine a bit too much or too less \bullet

GPT4 has best performance metric

Figure 2. Model comparison following cognitive bias addition. Accuracy is indicated by the distance between each dot and the origin (e.g., a radius of 0.8 corresponds to 80% accuracy). The names of each cognitive bias surround the circle. Table 1 shows the results in tabular format.

Feature Preprocessing Handled missing values and removed duplicate A **Evaluating fairness metrics to remove** gender bias for patients: **Treatment Equality** This fairness measure requires equal false negative rates (FNR) across different groups. It ensures that the model is equally inaccurate for all groups when predicting negative outcomes Minimize Type 2 Errors

Data Set

MedQA dataset : randomly sampled data from conversations between physcians and patients. **Obtained ethical clearance** Data was collected by the researchers empirically: Abacha, Asma Ben, et al. "An empirical study of clinical note generation from doctor-patient encounters." Proceedings of the 17th

Features Identified

FAMILY HISTORY/SOCIAL HISTORY (fam/sochx): This includes information about the patient's family medical history, lifestyle, and social context. It helps understand potential genetic risks and environmental factors.

HISTORY OF PRESENT ILLNESS (genhx): This feature captures details about the patient's current health condition, symptoms, and any relevant events leading up to their visit.

PAST MEDICAL HISTORY (pastmedicalhx): Here, we document the patient's previous medical conditions, surgeries, and chronic illnesses. It provides context for their current health status.

CHIEF COMPLAINT (cc): The patient's primary reason for seeking medical attention. It helps focus the assessment and diagnosis.

PAST SURGICAL HISTORY (pastsurgical): Information about any surgical procedures the patient has undergone in the past.

ALLERGY: Details about any known allergies the patient may have, including medications, foods, or environmental triggers.

REVIEW OF SYSTEMS (ros): A comprehensive assessment of various body systems to identify any additional symptoms or issues.

MEDICATIONS: A list of the patient's current medications, including dosage and frequency.

ASSESSMENT: The healthcare provider's evaluation of the patient's overall health and any specific findings.

EXAM: Documentation of the physical examination performed by the provider.

DIAGNOSIS: The identified medical condition or problem based on the assessment and examination.

DISPOSITION: Decisions regarding further treatment, referrals, or hospitalization.

PLAN: The proposed course of action, including treatment options, follow-up, and patient education.

EMERGENCY DEPARTMENT COURSE (edcourse): A summary of the patient's experience during their emergency department visit.

IMMUNIZATIONS: Information about the patient's vaccination history.

GYNECOLOGIC HISTORY (gynhx): Relevant details about the patient's reproductive health and gynecological issues.

PROCEDURES: Any medical procedures or interventions performed on the patient.

OTHER HISTORY (other_history): Additional relevant information not covered by the above features.

LABS: Results from laboratory tests and diagnostic studies.

Sample Data

import pandas as pd import numpy as np

Load the dataset file_path = '/mnt/data/cognitive_biases_dataset_detailed (1).xlsx' df = pd.read_excel(file_path) # Correct 'Disease' column based on the specified order every 600 entries diseases = ['Asthma', 'Depression', 'Diabetes', 'Migraine', 'Hypertension'] num_diseases = len(diseases) for i in range(len(df)): df.at[i, 'Disease'] = diseases[(i // 600) % num_diseases]

Display the first few rows of the dataset sample_data_output = df.head() sample_data_output

Sample Rule System

Bias Type	Rule	Example in P
Confirmation Bias	Assuming the cause of symptoms without thorough assessment, and failing to consider alternative diagnoses. Giving too much or too little weight to past medical history without considering current clinical presentation.	If the physicia asthma symp inhaler techni potential con- obstructive p congestive he
Measurement Bias	Overemphasizing clinical parameters and neglecting comprehensive assessment, including psychosocial aspects of care and potential limitations of measurements.	If the physicia results or pea considering fa technique, or on numerical
Automation Bias	Overreliance on automated alerts or prompts without critical evaluation of patient presentation and symptoms, potentially leading to misdiagnosis or overlooking comorbid conditions.	If the physicial solely based of increase the of factors such a or potential c

hysician Note

an attributes the patient's otoms solely to inadequate ique without considering other ditions such as chronic oulmonary disease or eart failure.

an focuses solely on spirometry ak flow measurements without factors such as patient effort, the limitations of relying solely measurements.

an adjusts medication dosage on an automated reminder to dose without considering other as patient-reported symptoms comorbid conditions.

Methodology

Mathematically, the problem is a directed graph translating from the symptom space(space of all possible symptoms associated with the diseases in the disease space) to measurement space(space of all possible measurements that can be performed to identify the diseases associated with all the symptoms in the symptom space) to disease space(diseases in the data set), where the edges represent the probabilities.

The problem can be broken down into 3 major steps: Step 1: Training NLP model for Bias Identification from annotated data set

Step 2: Disease and bias-specific corrective action Step 3: Train neural network for bayesian update and probability map generation

Neural Network Output(under training)

48/48 [====================================
Epoch 2/50 48/48 [====================================
48/48 [====================================
Epoch 3/50
48/48 [===============================] - 0s 7ms/step - loss: 0.1659 - accuracy: 0.9394 - val_loss: 0.2816 - val_acc
Epoch 4/50
48/48 [===============================] - 0s 7ms/step - loss: 0.0899 - accuracy: 0.9732 - val_loss: 0.3089 - val_accuracy
Epoch 5/50
48/48 [==============================] - 0s 7ms/step - loss: 0.0540 - accuracy: 0.9824 - val_loss: 0.3318 - val_acc
Epoch 6/50
48/48 [================================] - 0s 7ms/step - loss: 0.0414 - accuracy: 0.9899 - val_loss: 0.3480 - val_acc
Epoch 7/50
48/48 [==============================] - 0s 7ms/step - loss: 0.0267 - accuracy: 0.9924 - val_loss: 0.3763 - val_accuracy
9/9 [=============================] - 0s 2ms/step - loss: 0.2897 - accuracy: 0.8996
Test Loss: 0.28965526843070984
Test Accuracy: 0.899581015586853

- ccuracy: 0.8604
- uracy: 0.874<u>6</u>
- curacy: 0.8896
- uracy: 0.884<u>6</u>
- curacy: 0.<u>884</u>6
- curacy: 0.8996
- curacy: 0.<u>8921</u>

Code

model.add(Dense(512, input_dim=input_dim, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(128, activation='relu')) model.add(Dense(1, activation='sigmoid'))

model.compile(optimizer=Adam(learning_rate=0.001), loss='binary_crossentropy', metrics=['accuracy']) return model

Main function to run the training and evaluation def main(): **# Load the dataset** file_path = 'validated_cognitive_biases_dataset.xlsx' df = load_data(file_path)

Prepare features and labels X, y, label_encoder, vectorizer = prepare_features_labels(df)

Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Compute class weights to handle class imbalance class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train) class_weights_dict = dict(enumerate(class_weights))

Build the model model = build_model(X_train.shape[1])

Early stopping to prevent overfitting early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

Train the model history = model.fit(X_train, y_train, epochs=50, batch_size=32,

Performance Metrics

Balanced accuracy = (Sensitivity + Specificity) / 2 where:

- Sensitivity: The "true positive rate" the percentage of positive cases the model is able to detect.
- Specificity: The "true negative rate" the percentage of negative cases the model is able to detect.

Cognitive biases in decision making are so common according to literature so yes the data set is imbalanced which merits the use of such an approach.

Schmidgall, S., Harris, C., Essien, I., Olshvang, D., Rahman, T., Kim, J. W., ... & Chellappa, R. (2024). Addressing cognitive bias in medical language models. arXiv preprint arXiv:2402.08113 Data Set:

Confusion matrix

0.05 0.06 0.05 600 weighted avg 0.05 0.06 0.05 600

Sample Code outputs

Physician Notes	Predicted Disease	Actual Disease	Predicted Bias
His brothers had prostate cancer. Father had asthma.	Diabetes	Asthma	Confirmation Bias
This 19-year-old Caucasian female presents to	Asthma	Asthma	None
The patient is an 89-year- old lady. She actually	Asthma	Diabetes	Measurement Bias
None.	Migraine	Migraine	None
PUD, ?stroke and memory difficulty in the past	Hypertension	Hypertension	None

Suggestive Action

Review family history for correct influences

None

Re-evaluate patient's

symptoms and

diagnostics

None

None

Code outputs for biases(Not trained well so showing last)(There was class imbalance during annotating which was handled by assigning weights to each class such that they balance out)

For the observant amo	14ms/step - accuracy: DNg
you Early Stopping t	0
2/7 prevent overfitting	/step - accuracy:
.9854 - 1c val	_accuracy: 0.8800 - val_loss:
.3293	
poch 6/50	
2/72	1s 14ms/step - accuracy:
.9837 - loss: 0.0383 - val	_accuracy: 0.8800 - val_loss:
.3598	
3/23	0s 3ms/step - accuracy: 0.8921
loss: 0.2064	
est Loss: 0.20477801561355	59
est Accuracy: 0.8942976593	971252

Sensitivity: C1 =0.84, C2=0.91, C3=0.92

Text: Physician attributes all symptoms (e.g., wheezing, coughing,... Predicted Label: Confirmation Bias Actual Label: Confirmation Bias Sample 3: Text: The patient has a history of multiple medical problems inclu... Predicted Label: Measurement Bias Actual Label: Automation Bias Sample 4: Text: Married. He is retired, being a Pepsi-Cola driver secondary... Predicted Label: Automation Bias Actual Label: Automation Bias

Advantage and Limitation

Advantages

Logically speaking, adding additional nodes to the network (include more diseases!) shouldn't affect model generalizability or performance.

Limitations

Big assumption in our model that diseases are not correlated!!

Depression and Asthma miscorrelation

Next Step(for shark tank pitch)

Build Rumsfeld Matrix Go deeper into the problem

Example of Valuation Matrix: Here incremental cost would be \$4685

Build Probability Map for Doctor